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1. Abstract  
 In general, the used refractories in a steelmaking works 

are mostly disposed as waste materials. To reduce the amount 
of waste materials, a study was conducted on the recycling of 
these used refractory materials[1].  

It is well known that used refractory materials can be used 
again as castable or gunning refractories, but this study 
focused on using them as the hearth bottom lining material in 
a heating/reheat furnace in a hot rolling mill, which is a new 
application for recycled refractories. It was considered that it 
would be good to make the scale removal work on the 
surface of the hearth bottom easier, by using recycled 
materials there, and, in addition, it was expected to reduce the 
repair cost by greatly reducing the need to replace bottom 
bricks. 

After several trials, a new application technology was 
established for recycled refractories, the cost of the hearth 
refractories was reduced, and the scale removal work was 
made faster and easier.  
 
2. Introduction 

Many types of refractories are used for many 
applications in a steelmaking plant. And most of the 
refractories used in the steelmaking process are disposed 
as waste materials. To reduce the amount of disposed 
materials, it is important to use the waste materials 
effectively as recycled materials, in addition to reducing the 
waste generation by increasing the service life of refractories. 
Therefore, work was undertaken to increase the recycling of 
these used refractory materials. Figure 1 is a flow chart of the 
recycling process of refractories, after use in Yawata 
Works[2]. 

The main use of recycled refractories has been as repair 
materials, such as castables and gunning materials, etc. used 
in the ironmaking and steelmaking process, as shown in 
Table 1[3] [4]. But the intent of this study was to find a new 
applications for recycled refractories, which focused on the 
hearth bottom of a heating/reheat furnace in a hot rolling 
mill.  
 

 
Figure 1  Flow chart of the recycling process for used 
refractories in Yawata Works. 

 

 
  

Table 1 Main applications of recycled refractories 
 

Process Facility Application of recycled refractories 

Iron 
making 

Blast 
furnace ・Gunning refractory materials 

Steel 
making 

Torpedo 
car 

・Gunning refractory materials 

・Castable 

Steel 
making 

Ladle 
・Gunning refractory materials  

・Castable 

Steel 
making 

Converter
・Gunning refractory materials  

・Hot casting repair mix 

Steel 
making 

Tundish ・Gunning refractory materials 

 

 

3. Application of recycled refractories in a heating 
furnace in a hot rolling mill  

3.1 Review of the heating furnace in a hot rolling mill  
Figure 2 shows a cross-section schematic view of the 

heating furnace in a hot rolling mill. The heating furnace 
consists of skid beams, which support the steel plates, that 
are moved forward, fixed skid posts which support the skid 
beams, and movable skid posts, which move the steel plates 
forward intermittently, by their repeated rectangular motion. 
The furnace is divided into three zones, namely, the 
pre-heating zone, heating zone, and soaking zone, from the 
charging side. The steel plates are inserted into the furnace 
from the charging side, and are heated up gradually; at the 
same time, iron oxide, called “scale” (FeO,Fe2O3), forms 
on the surface of the plates. The scale falls to the hearth 
bottom and deposits there. With time, it becomes 
necessary to remove the scale deposit during the periodic 
repairs of the furnace.  

 
Figure 2  Cross-section schematic view of a heating/reheat 
furnace in a hot rolling mill 
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Figure 6  Schematic view of the barrier structure models 

 
The stability of three different barrier structures, which 

were all 100 mm thick, were tested against the strong gas 
flow of gas jets (4 m/s and 7 m/s) for 3 min. The weight 
change of the barrier structures, before and after the test, was 
measured, and the results, are shown in Figure 7.    
 Figure 7 shows the relationship between the gas jet flow 
rate and the weight reduction of the three barrier structures, 
composed of 100% recycled material. When the gas jet flow 
was 4 m/s, there was no weight loss for any of the barrier 
structures, but weight losses did occur when the gas jet flow 
was increased to 7 m/s. It was obvious that Case 2 was better 
than the others, so the Case 2 barrier structure was adopted 
for the actual furnace test.      

  
 
Figure 7  Relationship between the gas jet flow rate and the 

weight reduction of the recycled materials   
 
 
5. Ballast lining in the actual furnace test 
The barrier structure of Case 2, with the Al2O3-SiO2 

recycled material, was field-tested in the actual heating 
furnace. The Al2O3-SiO2 recycled material ballast structure 
included coarse particles in a 50 mm thick layer and fine 
powder in a 50 mm thick layer; this ballast layer was spread 
over the whole hearth bottom, from the preheating zone to 
the soaking zone of the heating furnace, as shown in Figure 
8.    

 
Figure 8  Schematic view of the ballast lining 
design/structure in the actual heating furnace test 
 
6. Results of furnace field test 
 Photographs of the Case 2 hearth bottom, before the start 
of furnace operation, and after about 6 months of operation, 
are shown in Figure 9. Figure 9-3 shows that the hearth 
bottom brick under the Al2O3-SiO2 recycled material was not 
damaged by the scale and it was clear that the Case 2 barrier 

layer of Al2O3-SiO2 recycled material could successfully 
prevent the penetration of the high temperature molten scale 
into the bricks, and the associated adherence of the scale.   

  

 
Figure 9  Photographs of the Case 2 ballast layer and bottom 
 bricks after the actual furnace test 
 

The condition of the Al2O3-SiO2 recycled material barrier 
layer was investigated in detail, after use. A part of the 
barrier material was removed by a scoop from the hearth 
bottom, as shown in Figure 10-1, and observed carefully. The 
molten scale penetrated into the fine powder layer but did not 
reach the bottom bricks, as shown in Figure 10-2. Figure 
10-3 shows that the molten scale penetrated into the coarse 
particle zone, covered the coarse particles, and reacted with 
them. Therefore, it was concluded that the Case 2 Al2O3-SiO2 
recycled material barrier layer succeeded in protecting the 
hearth bottom bricks from attack by the molten scale for the 
operating period, between the periodic repairs of the hearth 
bottom. 

 
Figure 10  Photographs of the removal of the bottom hearth  
scale deposits after the heating furnace test 

 
The labor effort required to remove the scale deposition 

from the hearth bottom, before and after adoption of the 
ballast barrier method, was compared. Figure 11 shows that 
the labor efficiency was three times better using the ballast 
barrier than for the conventional method. 

Furthermore, it became clear that the repair cost of the 
hearth bottom was reduced about 90%, as shown in Figure 
12, because there was no adhering layer of scale bonded to 
the bottom bricks, so demolition work was not needed, and 
the replacement cost of the bottom bricks was saved. 

 
 

Figure 11  Comparison of the removal work of the bottom  
hearth scale deposits 
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Figure 12  Comparison of the repair cost index 
 
7. Discussion  

Work was done to scientifically evaluate the effects of 
furnace operation on the barrier zone.  

Figure 13 shows a schematic view of the hearth bottom 
with scale deposition, both for the conventional and the 
improved designs. In the conventional case, the upper layer 
of the bottom brick lining, where the molten scale penetrated, 
was destroyed during the demolition. However, for the 
improved design, the material to be demolished was limited 
to only the ballast barrier layer with scale penetration, and 
the bottom bricks were not damaged. The compressive 
strength was determined for the scale-penetrated layer of the 
bottom brick and the ballast barrier, for samples from the 
heating furnace bottom. The results are shown in Figure 14. 
It is clear that the strength of the scale-penetrated ballast 
material was 1/20 of the scale- penetrated brick, and thus it 
could be removed very easily. 

To verify the reaction between the Al2O3-SiO2 recycled 
material and scale, x-ray diffraction (XRD) was done on the   
ballast samples taken from the hot surface of the barrier layer 
and about 30 mm below the hot surface, after use. Table 3 
shows the results of the XRD examination. The recycled 
Al2O3 -SiO2 material consisted of Al2O3, SiO2 and mullite 
(3Al2O3-2SiO2). The barrier surface sample contained 
iron-cordierite (2FeO-2Al2O3-5SiO2) as a reaction product, 
which had a melting point of 1083°C. This indicated that 
there might be liquid phase in that area, where the 
temperature was about 1200°C during furnace operation. 
However, the iron-cordierite was not present in the sample 
taken from about 30 mm below the hot surface. Therefore, it 
was presumed that the reaction between the scale and 
recycled material did not occur at that level because the 
temperature was lower.  

Based on these results, it was concluded that the area 
where the scale caused serious damage was limited to the 
region within 30 mm of the hot surface.  

 
Figure 13  Schematic views of the hearth bottom with  
scale deposition, showing the demolition range. 

 
 

 
Figure 14  Results of compressive strength test 

 
 

Table 3  Results of XRD examination of the used barrier  
layer samples  

 
 
8．Conclusions 

The goal of this work was to reduce the waste refractory 
material in Yawata Works. Effort was focused on the 
Al2O3-SiO2 type recycled material for use in the hearth 
bottom of a heating furnace, to protect the bottom bricks 
from scale penetration/bonding, and damage during 
periodic scale removal. 

Success was achieved in preventing scale penetration on 
the bottom brick by adopting a size-graded, layered ballast 
barrier that was 100% Al2O3-SiO2 recycled refractory 
material. 

The efficiency of the scale removal work was increased 
about three times for the ballast barrier layer, compared 
with the conventional practice, and the repair cost was 
reduced 90%, because the need to replace bottom bricks 
after demolition was greatly reduced.  
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