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ABSTRACT

For thermo-mechanical modeling of industrial vessels with the
Finite Element Method (FEM), refractories should be seen, at
macroscopic scale, as a homogeneous continua. However, at micro-
scopic scale these refractory materials involve sophisticated micro-
structures that mix several phases. Generally, these micro-structures
are composed by a large amount of inclusions embedded in a brittle
matrix that ensures the cohesion of the material. In some cases,
these materials can advantageously exhibit complex non linear
mechanical behaviors that results from the interactions between the
different phases that compose the composite micro-structure. These
phenomena involve a high amount of discontinuities and can not be
tackled easily with the Finite Element Method (FEM). The Discrete
Element Method (DEM) naturally accounts for discontinuities and is
therefore a good alternative to the continuum approaches such as the
FEM. However, the difficulty with DEM is to perform quantitative
simulations because the mechanical quantities can’t be described
in terms of the classical continuum theory such as stresses or
strains. This study will describe the approach used to tackle this
fundamental difficulty. The results given by the proposed approach
are compared to experimental data obtained on simplified refractory
materials.

Keywords: Refractories, Non linear mechanical behaviors, Dis-
crete Element Method (DEM), Simulation, Calibration, Validation

I. INTRODUCTION

Rocks, ceramics or refractories are heterogeneous materials ex-
hibiting a multi-phase composition involving different sizes of
aggregates, bonding phases and additives. Most of these materials
present numerous micro-cracks at room temperature resulting from
thermal expansion mismatches between their various constituent
phases and their thermal histories. These damages highly influence
the thermo-mechanical properties of such materials. These phenom-
ena can not be easily described with the Finite Element Method
(FEM) which is not adapted to describe discontinuities at the
microscopic scale [1], such as micro-cracks without assumptions on
their localization, their paths, their growths and their coalescences.

The Discrete Element Method (DEM) could be an interesting
alternative to study multi-damaged materials because it takes natu-
rally into account discontinuities. The DEM implements a group
of distinct elements (also named discrete element) that are in
interaction through contacts or cohesive laws. This model consists
of an assembly of discrete elements, deformable or not, linked up
by simple mechanical laws to mimic the behavior of the material.
The discrete element approach used here is a mix between the
lattice models and the particle models as it was first proposed
by Potyondy in [2]. The advantages are the description, in a
natural way, of the crack initiations, the crack propagations, their
coalescences and closures. However, the fundamental difficulty
of this approach is to simulate quantitatively the continuum [2].
The purpose of the free DEM software GranOO is to face this
difficulty. At this time, GranOO embeds some models that enable
the quantitative simulation of mechanical, thermal and electrical
behavior of continua with DEM [3][4][5].

The goal of this work is to find a fast and validated DEM cali-
bration method to predict the occurrences of micro-cracks and their
influences on macroscopic properties such as Young’s modulus.

II. MODEL MATERIAL

The reference material used for this work is a model material.
A model material mimics, through a simplified framework, a given
discoupled phenomenon observed with real and complex materials.
In order to study the impact of thermal expansion mismatches, a
two-phase model material, composed of alumina inclusion and glass
matrix, is preferred. The thermo-mechanical parameters values for
alumina and glass were chosen to produce a micro-crack network
during the cooling stage of the sample preparation.

The model materials used in this study are composed of spherical
monomodal alumina inclusions (average diameter equals to 500
µm) which are randomly placed in a borosilicate glass matrix. The
main requirements of the selected glass matrix are homogeneity,
isotropy, a rather chemical inertia and the capability to adjust
thermal expansion coefficient (CTE). In this way, a borosilicate
glass has been prepared from the melting of a vitrifiable mixture
initially constituted by different raw materials containing silica,
boron oxide and other secondary oxides. A perfectly controlled
volume fraction of alumina inclusions is incorporated in the mixture
and is homogenized during 1 hour to ensure the dispersion of
spherical alumina inclusions. Green specimens (80 × 40 × 10
mm3) are shaped by uni-axial pressing (80 MPa) before debinding
and sintering under uni-axial pressure (15MPa at 600◦C) to remove
residual porosity. Three different volume fractions of inclusion were
prepared (15%, 30% and 45%). Fig. 1 shows the microstructure
of a final two-phase model material highlighting the micro-crack
network. The main thermo-mechanical properties of both individual
materials are given in the Tab.1.

Tab. 1. The main thermo-mechanical parameter values of the
borosilicate glass and alumina

Properties Matrix Inclusion
Material Glass Alumina
Expansion coefficent α (K−1) 11.6×10-6 7.6×10-6

Young’s modulus E (GPa) 72 340
Poisson’s ratio ν 0.23 0.24
Tensile strength (MPa) 50 380

The introduction of spherical particles in the matrix leads the
occurring of thermal stresses during the cooling stage of the
sample processing. Because of the CTE mismatch, the matrix is
under tensile mode and the inclusions are subjected to compressive
stresses. Brittleness of the glass matrix induces orthoradial cracks
that occurs and propagates in the matrix (Fig. 1).

Inclusions Matrix Cracks

Fig. 1. Damaged microstructure of the model material

III. OVERVIEW OF THE NUMERICAL PROCEDURE

The main simulation steps implemented in this study is described
in this section. The first step consists in calibrating the thermo-
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mechanical parameters of the discrete element model (for details,
see the next section). These microscopic parameters, related to
the scale of the discrete elements, are denoted by the ‘m’ suffix.
These parameters are the microscopic Young’s modulus Em, radius
ratio rm (a geometrical factor which describes the link between
the elements), tensile strength σmf , thermal expansion coefficient
(CTE) αm and the coordination number cn (the average number
of interaction (e.g., cohesive beams) per discrete element). In
opposition, the emergent behaviors of the whole assembly network
of discrete elements and the bounding shape of the discrete domain
are called macroscopic. The macroscopic scale is symbolized by the
‘M ’ suffix. These parameters are the macroscopic Young’s modulus
EM , Poisson’s ratio νM , tensile strength σMf and CTE αM . The
macroscopic behavior corresponds to the behavior of the simulated
materials. The values of microscopic parameters Em, rm, σmf and
αm are quantified thanks to a calibration process in order to reach
the required values of macroscopic parameters EM , νM , σMf and
αM . Considering the values reported in Tab.1, both borosilicate
glass and alumina parameters are calibrated separately.

Concerning the relation between αm and αM , after carry out
some simulations, the following simple result is obtained:

αµ = αM (1)

So, the thermal expansion coefficient can be introduced directly
without any calibration. The calibration method of Em, rm is
presented in the next section.

After building the initial cubic discrete domains, the second step
consists in inserting the spherical alumina inclusions. This step
involves a simple geometrical algorithm. Then, the virtual sample
is cooled from 450◦C (the glass transition temperature) to 20◦C
(room temperature). This step, that involves thermo-mechanical
simulations, leads to cracks initiation and propagation in the virtual
samples (see Fig. 2). In this study, the temperature is supposed
constant within the sample and the thermal conduction is neglected.
Finally, the damaged virtual samples given by the last step are
“numerically frozen”, which means that further crack extension is
forbidden. Thus, only the elastic behavior is taken into account.
These “frozen samples” are submitted to virtual tensile tests to
evaluate their apparent Young’s modulus EM.

Inclusion

Matrix

Cracks

Fig. 2. Virtual sample of the two-phase model material

IV. FAST CALIBRATION METHOD OF ELASTIC PARAMETERS

The cohesive beam bond model [7] is used here to simulate elastic
media characterized by Young’s modulus and Poisson’s ratio. In
such model, the discrete elements are bonded by Euler-Bernouilli
beams that can be loaded in a tensile, a bending and a torsion
mode. The cohesive beams are simply defined by two microscopic
parameters: a Young’s modulus Em and radius ratio rm. The radius
ratio rm is given by the ratio between the radius of cohesive beam
and the average radius of the two discrete elements connected
by this beam. The Em and the rm values are quantified thanks
to a calibration process in order to reach the required values of
macroscopic Young’s modulus EM and Poisson’s ratio νM . The
calibration process is a complicated and non-normalized process
which uses trial-and-error method and requires a frustrating analysis
related to several virtual tensile tests. This is the major obstacle
on the use of DEM in industry and applied engineering numerical
methods.

A fast and validated calibration method of Em, rm is presented
in this section. The principle of this method is to find the relations
between microscopic laws, at the discrete element scale and the
macroscopic properties, at the structure scale, to skip the trial-and-
error calibration.

Firstly, a series of numerical tensile tests with different values
of microscopic parameters was performed in order to determine
the relation between the macroscopic (EM , νM ) and microscopic
parameters (Em, rm and cn) of the discrete element model.

Intervals of variation of Em, rm, cn are given in the Tab.2.

Tab. 2. Intervals of variation of microscopic parameters

Interval Quantity
Sample 1 2 3 4 4
Em (GPa) 500 1000 1500 2000 2500 5
rm (-) 0.2 0.4 0.6 0.8 1.0 5
cn (-) 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12.5 13 16

Thus, 4× 5× 5× 16 = 1600 tensile tests were performed to ac-
complish this task. Each tensile test gave one value of macroscopic
Poisson’s ratio νM and one value of macroscopic Young’s modulus
EM . Consequently, a data cloud including 1600 data points was
obtained. Based on this data cloud, analytical formulas were desired
in order to best describe the relation between the DEM macroscopic
and microscopic parameters.

A. Relation between macroscopic Poisson’s ratio νM and
radius ratio rm

According to the parametric study of Damien André in [6], there
is an independence of the macroscopic Poisson’s ratio νM from
microscopic Young’s modulus Em. To study the evolution of the
macroscopic Poisson’s ratio νM versus radius ratio rm, for each
value of coordination number, a scatter diagram is plotted (see
Fig.3). In this diagram, the horizontal axis is related to values of rm
and the vertical axis is related to the corresponding values of νM .
Based on this scatter, the non-linear least squares method is used to
find out the best fitting function that well describes the considered
evolution.

There are probably many functions which can describes this
evolution. Consequently, the chosen fitting function must satisfy
five criteria:

1) The maximum coefficient of determination must be obtained:
R2 ∈ [0.98 : 1].

2) The maximum residual between the fitted curve and the
scatter must be lower than 1%.

3) The fitting function must “work well” with all values of
coordination number.

4) If many functions satisfy the three previous criteria, the
function that involves the lowest number of coefficients is
chosen.

5) The evolution of the related coefficients versus the coor-
dination number must be describable by a fitting function.
Chaotic evolutions are proscribed.

After trial-and-error proceeding, one found that the relation
νM = f1(rm) could be well described by a third order approximate
function (see equation 2 and Fig.3):

νM = f1(rm) = a1 + b1.rm + c1.r
2
m + d1.r

3
m (2)

The five proposed criteria are perfectly satisfied by equation 2.

B. Relation between macroscopic Young’s modulus EM and
radius ratio rm and microscopic Young’s modulus Em

The same approach used in the previous section is used here.
For each value of coordination number, a 3D scatter diagram is
plotted (see Fig.4). In this diagram, the two horizontal axis are
related to values of rm and Em, and the vertical axis is related
to the corresponding values of EM . Based on this 3D scatter, the
non-linear least squares method is used again to find out the best
fitting function that well describes the evolution of macroscopic



3

Fig. 3. Fitted curve corresponding to all values of coordination number

Young’s modulus EM versus radius ratio rm and microscopic
Young’s modulus Em. The chosen function must satisfy the five
criteria as explained in the section IV-A.

After trial-and-error proceeding, one found that the relation
EM = f2(Em, rm) could be well described by the following
analytic formula:

EM = f2(Em, rm) = Em.(a2 + b2.rm + c2.r
2
m + d2.r

3
m) (3)

The five proposed criteria are perfectly satisfied by equation 3 (see
Fig.4).

Fig. 4. Case of coordination number cn = 6

C. Relation between the macroscopic parameters and coor-
dination number

In the two previous sections, the functions f1, f2 which express
the relation between the macroscopic parameters (EM , νM ) and the
microscopic parameters (Em, rm) of discrete element model were
successfully found (see equations 2 and 3). However, their coeffi-
cients a1, b1, c1, d1 and a2, b2, c2, d2 depend on the coordination
number. The aim of this section is to find the relations between
these coefficients and the coordination number.

The non-linear least squares method is used once again to find
out the best fitting functions that well describe the considered
relations. Scatters of data are plotted (Fig.5 and Fig.6). In each
scatter, the horizontal axis is related to values of coordination
number, the vertical axis is related to the corresponding values of
the considered coefficient. The first fitting function νM = f1(rm)
involves 4 coefficients a1, b1, c1, d1. Therefore, 4 fitting functions
which express the evolutions of these 4 coefficients versus the
coordination number need to be found. The similar process is
performed for the second fitting function EM = f2(Em, rm). There
are also 4 fitting functions for 4 coefficients a2, b2, c2, d2.

There are probably many functions which can describes these
evolutions. Consequently, the chosen fitting function related to each
coefficient must satisfy three criteria:

1) The maximum coefficient of determination must be obtained:
R2 ∈ [0.98 : 1]

2) If many functions satisfy the previous criterion, the function
that involves the lowest number of coefficients is chosen.

3) The fitting function “work well” with all coefficients related.
After trial-and-error proceeding, expressions of the relation be-

tween the considered coefficients and coordination number are
found (see formulas 4, 5):

coef1 = g1(cn) = A1 +B1.tanh[C1.(cn− 7) +D1] (4)

coef2 = g2(cn) = A2 +B2.cn+ C2.cn
2 +D2.cn

3 (5)

In the formula 4 and 5: coef1, coef2 represents (a1, b1, c1, d1)
and (a2, b2, c2, d2) respectively. The three proposed criteria are
perfectly satisfied by these formulas. The fitted curves and their
representative equations are shown in Fig.5 and 6.

Fig. 5. Fitted curves for coefficients of νM = f1(rm)

Fig. 6. Fitted curves for coefficients of EM = f2(Em, rm)

D. Validation of the proposed relation between macroscopic
parameters and coordination number

To validate the proposed relation between macroscopic parame-
ters and coordination number, a series of virtual tensile tests were
performed. In this study, the validation process were accomplished
for glass and alumina.

For each value of coordination number, coefficients of two fitting
functions νM = f1(rm) and EM = f2(Em, rm) (i.e., a1, b1, c1, d1
and a2, b2, c2, d2 respectively) were calculated by using functions
g1(cn) and g2(cn) respectively (see equations 4 and 5).

Thanks to these values of coefficients and values of macroscopic
parameters of simulated materials (i.e., glass and alumina, see
Tab.1), values of Em, rm are computed (equation 6).

a1 + b1.rm + c1.r
2
m + d1.r

3
m = νM

Em.(a2 + b2.rm + c2.r
2
m + d2.r

3
m) = EM

(6)
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In equation 6, a1, b1, c1, d1 and a2, b2, c2, d2 are computed by
using functions g1(cn) and g1(cn) respectively. Value of νM and
EM are given by Tab.1.

Thus, for each value of coordination number, values of micro-
scopic parameters (Em, rm) are obtained for the two simulated ma-
terials. These values were used to perform virtual tensile tests. The
macroscopic Young’s modulus and Poisson’s ratio obtained by these
tests were compared to the required values of the corresponding
parameters of glass and alumina (Tab.1). If the maximum residual
between the values obtained by validation tests and the required
values is lower than 2%, the proposed relation will be validated.

Synthesis of the validation process is shown in the Tab.3 and 4.

Tab. 3. Validation results for glass

cn
rm

computed
(-)

Em

computed
(GPa)

νM
obtained

(-)

Residual
(%)

EM

obtained
(GPa)

Residual
(%)

5.5 0.524 617.76 0.231 0.633 71.90 0.134
6 0.506 593.49 0.231 0.533 72.26 0.366

6.5 0.485 586.61 0.230 0.001 71.76 0.320
7 0.461 591.98 0.230 0.103 72.00 0.001

7.5 0.438 603.58 0.230 0.145 71.97 0.035
8 0.417 615.98 0.230 0.125 71.56 0.608

8.5 0.398 626.40 0.230 0.082 71.83 0.226
9 0.380 635.17 0.230 0.030 72.43 0.594

9.5 0.364 644.15 0.230 0.257 71.93 0.091
10 0.348 654.66 0.230 0.167 71.74 0.363

10.5 0.333 666.57 0.230 0.151 71.63 0.516
11 0.320 678.49 0.230 0.191 71.33 0.926

11.5 0.308 688.53 0.230 0.072 71.15 1.181
12 0.298 695.11 0.230 0.112 70.86 1.573

12.5 0.290 697.40 0.230 0.184 70.98 1.421
13 0.283 695.47 0.230 0.163 70.87 1.572

Tab. 4. Validation results for alumina

cn
rm

computed
(-)

Em

computed
(GPa)

νM
obtained

(-)

Residual
(%)

EM

obtained
(GPa)

Residual
(%)

5.5 0.497 3381.77 0.241 0.442 339.78 0.066
6 0.478 3268.05 0.241 0.474 341.36 0.399

6.5 0.456 3255.69 0.240 0.067 338.88 0.328
7 0.432 3320.71 0.240 0.148 339.90 0.028

7.5 0.407 3435.92 0.240 0.245 339.74 0.077
8 0.383 3578.274 0.240 0.041 337.62 0.700

8.5 0.360 3739.90 0.240 0.167 338.88 0.328
9 0.338 3931.21 0.240 0.016 341.69 0.491

9.5 0.316 4173.29 0.241 0.329 338.88 0.328
10 0.294 4487.15 0.241 0.304 337.57 0.714

10.5 0.272 4887.17 0.241 0.299 336.82 0.934
11 0.251 5378.78 0.241 0.335 335.47 1.332

11.5 0.232 5957.74 0.240 0.007 335.42 1.346
12 0.214 6609.49 0.240 0.116 336.18 1.122

12.5 0.199 7308.56 0.239 0.283 340.39 0.115
13 0.187 8020.02 0.239 0.361 345.09 1.500

As we can see in the Tab.3 and 4, residuals are very low. The
maximum residual is 1.57%. Consequently, the proposed relations
between macroscopic parameters and microscopic parameters of
discrete element model are validated.

V. RESULTS AND CONCLUSION

Following the approach described in the section III, discrete
domains were subjected to cooling tests and then, to tensile tests in
order to quantify their apparent Young’s modulus. During the tensile
tests, the micro-cracks are “frozen” and are not allowed to extend.
Experimentally, the Young’s modulus are measured by ultrasonic
pulse echography technique that do not damage the materials.
Finally, the results of numerical simulations and experimental
observations are plotted in Fig. 7, where: the absciss Volume fraction
is the volumic fraction of inclusion in samples, the Hv- and Hv+
curves denote bounds of the Hashin & Shtrikman (H&S) model
[8], the Numerical 3D model without cracks curve corresponds
to the undamaged DEM samples, the Numerical 3D model with
cracks curve corresponds to the damaged DEM samples and the
Experimental curve corresponds to the experimental observations.

These results shows that the Numerical 3D model without cracks
match perfectly with the H&S model which does not take into

0.00

E (GPa)

Volume fraction (%)

350

300

250

200

150

100

50

20 40 60 80 100

Numerical 3D model without cracks

Numerical 3D model with cracks

Experimental

Hv-

Hv+

Fig. 7. Comparison of Young’s modulus between experimental, numerical
results and H&S model

account damages inside material. However, the Numerical 3D
model with cracks match with the experimental results measured
by ultrasonic pulse echography technique. It allows to validate
quantitatively the numerical 3D DEM model.

This work related to the simulation of thermo-elastic behavior
using DEM presents a significant improvement of the discrete
element methods applied to the simulation of continuum media.
This model has been applied to study the influence of damage
generated during the cooling stage of multiphase materials. This
damage highly influences the rigidity of materials and is a high level
of importance for common engineering applications. The proposed
method seems to be adapted to predict this rigidity and allows
to consider further studies to improve the understanding of more
complex multiphase materials such as refractories.

Accuracy of the DEM simulation depends entirely on how ac-
curately the microscopic parameters are selected. A fast calibration
method is proposed and validated in the section IV. For the further
work, the accuracy of the proposed method need to be carefully
checked by changing several factors such as: shape and/ or size of
discrete domain, number of discrete elements, etc. Furthermore, a
similar work on the tensile strength need to be accomplish in the
future study.
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