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ABSTRACT 

Understanding reactions between filter material and molten 
steel is essential to improve the purity of casted products by 
filtration. This contribution illuminates the kinetics of 
interactions between carbon-bonded filters and molten steel. In 
addition, a thermodynamic model complements the 
experimental results to describe the impact of carbon on these 
reactions. For the experiments, carbon-bonded alumina filters 
were coated either with pure alumina or with a mixture of 
alumina and 4 wt.% carbon (Al2O3+4C). Two methods were 
applied to evaluate the time dependence of the interactions. 
First, long-time experiments up to 30 min were carried out using 
spark plasma sintering (SPS) equipment. In the SPS tests, the 
flow of molten steel is minimized that allows an almost 
undisturbed examination of the chemical reactions at the 
interface. Secondly, the coated filters were immersed in molten 
steel for 10 s up to 120 s. These short-time tests were performed 
using a special steel casting simulator providing close-to-reality 
conditions. The phase composition and the distribution of phases 
at the metal/ceramic interface were characterized by means of 
optical microscopy, scanning electron microscopy (SEM) with 
energy and wavelength dispersive X-ray spectroscopy (EDX and 
WDX), and electron backscatter diffraction (EBSD). Carbon 
seem to accelerate the layer buildup during steel contact, as the 
in situ formed layers were more pronounced after immersing 
filters coated with Al2O3+4C for 10 s into the molten steel 
compared to pure alumina coated ones. The long-term SPS 
experiments also revealed enhanced chemical interactions of 
Al2O3+4C coated filters. The findings indicate that an 
accelerated dissolution and precipitation of alumina from steel is 
triggered by the presence of carbon, which is in excellent 
agreement with predictions obtained from the thermodynamic 
model. Interestingly, very fine inclusions having the size of a 
few micrometers were found on the surface of alumina coated 
filters after 60 s and even more of these inclusions after 120 s 
immersion. They are probably deposited directly from the 
molten steel. In summary, the carbon content of alumina based 
filter material significantly influences the steel melt filtration. 
The thermodynamic model clarified the impact of carbon on 
these interactions and will be beneficial to tailor future filter 
material compositions. 
Keywords: Steel melt filtration, carbon-bonded alumina, 
ceramic foam filter 
 
INTRODUCTION 

Non-metallic inclusions embedded in cast metal parts 
remarkably impair their performance. In particular the size, 
kind, density and distribution of non-metallic inclusions in 
metals are well known to influence their mechanical properties. 
Especially fracture toughness, tensile strength, ductility and 
fatigue of the products are affected, which can result in 
excessive casting repairs or rejected products. [1–3] 
For decades, ceramic foam filters have successfully been applied 
in iron and aluminum melt filtration. [4] In the case of steel melt 
filtration, filters based on partially stabilized zirconia or carbon-
bonded alumina have been used. [2,4] 
Within the framework of the Collaborative Research Center 
(CRC) 920, carbon-bonded alumina filters are investigated in 
detail to improve their filtration performance, for example by 
applying functional coatings. [5,6] Studies of Storti et al. [7,8] and 

Poirier and Thillou [9] indicate that the amount of carbon 
strongly influences the interactions between carbon-bonded 
alumina and molten steel. This study illuminates the influence of 
carbon regarding the time-dependent behavior of coated carbon-
bonded alumina filters and molten steel. 
In this study, two approaches were applied. For the first one, 
SPS equipment was used. Thereby, a filter sample and steel 
powder were heated up with extremely high heating rates (up to 
1300 K min-1), and the final temperature was held for either 1 
min or 30 min. This set-up minimized the macroscopic flow of 
molten steel. As a result, chemical reactions at the interface 
between the functionalized filter surface and the metallic melt 
were examined that were almost unaffected by mechanical 
attack or interlocking of inclusions on the filter surface. [10] 
The second series of experiments involved immersion tests that 
were carried out with immersion times ranging from 10 s to 120 
s using a steel casting simulator. Due to the inductive heating, a 
flow within the melt was created in such a way that the melt 
streamed on the rotating filter. After immersion, the filter was 
cooled down in an argon floated chamber in order to prevent 
oxidation during cooling, but also to drip off the steel melt from 
the filter surface. The latter made the analysis of the interfacial 
reaction products on the filter surface easier. This represents a 
big advantage as compared to real filtration tests, after which the 
solidified steel usually remains in the filter and complicates a 
detailed analysis of the interfacial reaction products. 
From our results, we deduce a more detailed model of the 
interactions between alumina coated carbon-bonded alumina 
filter and Al-killed steel. If a sufficiently high amount of carbon 
is present at the filter/steel interface, the filter behaves 
“reactively” due to dissolution and precipitation processes of 
alumina. As soon as the carbon supply is interrupted, these 
interfacial reactions come to an end and endogenous inclusions 
are deposited on the “actively” acting filter. 
 
MATERIALS AND METHODS 
Filter Manufacturing 

Manufacturing the ceramic foam filters is commonly based 
on the processing route patented by Schwartzwalder and Somers 
in 1963 [11]. The examined filters were produced following the 
same routine as described by Emmel and Aneziris [12]. Thereby, 
the carbon-bonded alumina filters were generated in two steps. 
First, polyurethane templates were impregnated with a water-
based carbon-alumina slurry. Secondly, they were spray coated 
to the final wet weight of 26 g (± 1 g). Impregnation slurry and 
spray-coating slurry were of the same composition except for 
the solids content. The slurries were based on composition no. 3 
in [12], which was further optimized by Emmel [13]. Due to 
agglomeration issues, the alumina raw material MR 70 was 
pretreated in the same way as described by Storti et al. [8] and 
Fruhstorfer et al. [14]. The prepared filters were heated up to 800 
°C under reducing atmosphere following the temperature 
program presented in Ref. [12]. Afterwards, the alumina coating 
was applied as a thin layer (about 20 µm to 100 µm) by cold 
spray coating. The composition was based on the alumina 
coating presented in Ref. [5]. To improve the slurry stability for 
the Al2O3+4C composition, though the alumina powder CL 370 
was partially replaced by the finer MR 70 (ratio 25:75). 
Furthermore, 6.25 wt.% of alumina were replaced by Carbores P 
in composition Al2O3+4C. That resulted in a residual carbon 
content of 4 wt.% after the heat treatment. The spray coating 
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process and the following heat treatment up to 1400 °C were 
similar to that described by Emmel and Aneziris [5]. 

 
Interface Reaction in Spark Plasma Sintering Tool 

Samples of the coated filters and a powder of the steel grade 
42CrMo4 were heat-treated in an SPS unit HPD 25 (FCT 
Systeme GmbH, Germany). The setup was similar to the 
procedure described by Salomon et al. [10]. Hollow ceramic 
cylinders made of the carbon-bonded alumina filter material 
served as sintering molds. They were filled with steel powder 
and pieces of the coated filter. Bottom and top of the hollow 
cylinders were covered by sheets of the carbon-bonded alumina 
to avoid leakage of the molten steel. This assembly was placed 
in the graphite tools of the SPS. 
All SPS experiments were carried out in power controlled 
heating mode to achieve the highest possible heating rate of 
about 1300 K min-1 from 450 °C to a final temperature of 1600 
°C. The original working pressure of 0.5 Pa increased to 5 Pa 
upon heating and chemical reaction producing carbon oxides. 
After dwell times of 1 min or 30 min, the heating was switched 
off, and the samples were rapidly cooled by water-cooled steel 
electrodes. 

 
Immersion Tests 

The immersion tests were carried out using a special steel 
casting simulator (SCS). Therein, about 30 kg of a steel grade 
42CrMo4 were melted within alumina-spinel crucibles. These 
crucibles were produced only for these experiments to avoid any 
CaO impurities, which may react with inclusions of the steel. 
The crucible composition, further process parameters and the 
immersion test cycle were the same as described by Dudczig et 
al. [6]. The short immersion trials of 10 s and 30 s were 
performed in accordance to Storti et al. [8]. Additionally, the 
immersion times were extended to 60 s as well as 120 s. The 
pretreatment of the steel ensured that each immersion trials 
started at similar oxygen levels. Thereby, the dissolved oxygen 
content and the temperature of the steel were determined after 
each stage of the trials: melting of the steel, oxidation with 0.5 
wt.% iron oxide, deoxidation with 0.05 wt.% aluminum, and 
after the filter immersion. 

 
Characterization of the filter and metal samples 

Before and after the SPS trials, local chemical analyses of 
the cross-sectional interfaces of the polished samples were 
carried out using a high-resolution scanning electron microscope 
(SEM) LEO-1530 (Carl Zeiss AG, Germany) with a field 
emission cathode and an energy dispersive X-ray (EDX) 
detector (Bruker AXS). 
The microstructure of the samples before and after the 
immersion tests was characterized by light and electron 
microscopy. For light microscopy, a digital light microscope 
VHX-2000 D (Keyence, Germany) equipped with an objective 
VH-Z20R was used. Carbon-sputtered samples were prepared 
and analyzed by an electron microscope Philips XL 30 (Phillips, 
Germany), which was also equipped with an EDX detector 
(EDAX-Ametek, USA).  
An SEM of the type Versa3D (FEI Company, USA) that was 
equipped with electron backscatter diffraction (EBSD) and EDX 
(both from EDAX-Ametek, USA) was used to determine the 
phase composition of deposited particles. 
 
RESULTS AND DISCUSSION 
SPS sample treatment 

After the SPS heat treatment, solidified steel persisted on the 
filter samples. After the dwell for one minute at the final 
temperature, microstructural changes of the carbon-bonded 
alumina nearest to the coating were observed for both filter 
types. In addition, bright spots were detected in BSE 
micrographs in that area. They contained iron and main alloying 

elements as determined by EDX. Thus, some steel might have 
moved through the coating material and have contributed to 
these microstructural changes. Similar observations have been 
done on coated and uncoated Al2O3-C filters. [6] According to 
them, these changes resulted from decarburization that had been 
triggered by iron acting as catalyst. Despite some cracks, which 
were probably caused by the strong thermo-shock, no distinct 
changes were observed at the coating/steel interface after one 
minute testing time. After 30 minutes (Fig. 1), however, the 
decarburization of the carbon-bonded alumina material was 
more pronounced and this zone became thicker. Unsurprisingly, 
the alumina in the coating was sintered with increasing testing 
time. Additionally, some particles near the coating surface were 
detected. EDX indicated that these particles consisted of 
aluminum and oxygen in the ratio of Al2O3. Further, line scans 
by WDX reveal that the steel near the filter surface is enriched 
with aluminum.  
For all observations, the outcome was more pronounced or 
enhanced for the Al2O3+4C coated filter, i.e. the decarburized 
zone, the formation of alumina structures on the filter surface, 
the amount of aluminum in steel near the filter. 

 
Fig. 1: Cross-section of the Al2O3 + 4%C coated filters after the 
30 min heat treatment in SPS. The micrograph was taken in the 
BSE mode. White arrow: decarburized zone; black arrow: 
formed alumina structures.  

 
Immersion trials 

The scheme in Fig. 2 exemplifies the observed layer buildup 
on the filter surface after immersing an alumina coated filter in 
molten steel. 
In the case of the alumina coated filters, a new layer on top of 
the alumina coating was observed. Small, mostly plate-like 
structures were in an initial state of growth. Comparing 10 s and 
30 s immersed filters, larger structures were formed. The 
solidified steel was also detected between them. After 60 s, in 
addition to that layer with plate-like structures, fine clusters 
were attached on top of these crystals in some areas on the 
investigated filter surface. These clusters completely covered the 
filter surface after 120 s immersing. 
Similar to the SPS experiments, a decarburized area and steel 
droplets were observed in the carbon-bonded alumina material 
under the coating of immersed filters. However, this zone was 
not as pronounced as in the SPS-samples. 
The newly formed layer was only a few hundred nanometers 
thick. The analyzed sections indicated that this layer was 
amorphous and contained tiny crystals. Traces of Si and Ca were 
detected in that layer.  
Alumina structures, which formed on the filter surface, were 
mostly plate-like and more crowded – bush-likely – near 
remaining steel droplets. They consisted of polycrystalline 
corundum having the size of 50 µm. There was no apparent 
orientation relationship between the attached crystals and the 
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of impurities. As above explained by Poirier et al. [9] and Lee et 
al. [17], the impurities influenced the formation of a vitreous 
layer on the filter surface. Thereby, a thicker layer covering the 
alumina polycrystals was found in addition to the in-situ layer 
on the coating (compare Fig. 2). As the thicker layer was not 
observed any longer after 60 s immersions, its components 
might have been reduced during the interactions. Further, the 
sintering of the filter surface was accelerated for this filter type. 
If that affected the deposition of endogenous inclusions, cannot 
be stated at the present, but will be clarified in future 
investigations.  
 
CONCLUSION 

Time-dependent processes running at the interface between 
molten steel and functionalizes alumina filters were 
investigated. The first process was characterized by a reactive 
behavior of the filter, i.e. polycrystalline alumina structures 
resulting from heterogeneous nucleation formed on an in-situ 
formed layer on the filter surface as a result of dissolution and 
precipitation reactions. Thereby, carbon and gas phases from the 
carbon-bonded filter material, dissolved oxygen of the steel, iron 
as catalyst, and probably endogenous inclusions from the steel 
were involved. Likely due to sintering of the coating material, 
these interactions stopped and the filter switched to an active 
behavior. During that stage, endogenous inclusions from the 
steel deposited on the resulting polycrystalline alumina 
structures, as alumina inclusions are attracted by alumina of the 
filter surface. [18] 
Clearly we could show that an increased amount of carbon in the 
coating influenced these stages due to accelerated interactions as 
well as the presence of more impurities in the coating. If that 
affected the deposition of endogenous inclusions, cannot be 
stated at the present, but will be clarified in future 
investigations.  
Our results implicate that the porous structure of the coating 
should be essential to provide the filter/steel interface with 
sufficient carbon and gaseous phases to trigger the interactions, 
which is in excellent agreement with the literature. 
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